Groupes d'homéomorphismes de variétés

Groups of homeomorphisms of manifold

ANR PRC Gromeov ANR-19-CE40-0007

Supported events

Scientific production

Group actions on one-manifolds:
  1. S.-h. Kim, N. Matte Bon, M. de la Salle, M. Triestino - Subexponential growth and \(C^1\) actions on one-manifolds, arXiv:2410.02614
  2. H. Eynard-Bontemps, A. Navas - All, most, some? On diffeomorphisms of the interval that are distorted and/or conjugate to powers of themselves, arXiv:2405.11366
  3. H. Eynard-Bontemps, A. Navas (with an appendix in collaboration with T. Virot) - The space of \(C^{1+ac}\) actions of \(\mathbb{Z}^d\) on a one-dimensional manifold is path-connected, arXiv:2306.17731
  4. J. Carnevale - Groups acting on the line with at most 2 fixed points: an extension of Solodov's theorem, arXiv:2210.07616
  5. H. Eynard-Bontemps, A. Navas - (Arc-)connectedness for the space of smooth \(\mathbb{Z}^d\)-actions on 1-dimensional manifolds, arXiv:2103.06940
  6. D. Malicet, E. Militon - Groups of smooth diffeomorphisms of Cantor sets embedded in a line, arXiv:1902.10564
  7. J. Brum, N. Matte Bon, C. Rivas, M. Triestino - Locally moving groups acting and laminar actions on the line, Astérisque (to appear), arXiv:2104.14678
  8. N. Guelman, I. Liousse - Interval Exchange Transformations groups: Free actions and dynamics of virtually abelian groups, Transform. Groups (to appear), DOI
  9. H. Eynard-Bontemps, A. Navas - On the failure of linearization for germs of \(C^1\) hyperbolic vector fields in dimension 1, J. Dyn. Differ. Equ., DOI
  10. J. Brum, N. Matte Bon, C. Rivas, M. Triestino - Solvable groups and affine actions on the line, J. Éc. polytech. 12 (2025), 23-69. DOI
  11. J. Brum, N. Matte Bon, C. Rivas, M. Triestino - A realisation result for moduli spaces of group actions on the line, J. Topol. 17 (2024), e12357. DOI
  12. C. Bonatti, J. Carnevale, M. Triestino - Non-locally discrete actions on the circle with at most \(N\) fixed points, Math. Z. 307 (2024), paper no. 6. DOI
  13. M. Triestino - Non-smoothability for a class of groups of piecewise linear homeomorphisms of the interval, Ann. Instit. Fourier (Grenoble) 74 (2024), 1095-1108. DOI
  14. H. Eynard-Bontemps, A. Navas - On residues and conjugacies for germs of 1-D parabolic diffeomorphisms in finite regularity, J. Inst. Math. Jussieu 23 (2024), 1821-1855. DOI
  15. S. Alvarez, P. G. Barrientos, D. Filimonov, V. Kleptsyn, D. Malicet, C. Meniño, M. Triestino - Ping-pong partitions and locally discrete groups of real-analytic circle diffeomorphisms, II: Applications, Comment. Math. Helv. 98 (2023), 643-691. DOI
  16. N. Guelman, I. Liousse (with an appendix by P. Arnoux) - Uniform simplicity for subgroups of piecewise continuous bijections of the unit interval, Bull. London Math. Soc. 55 (2023), 2341-2362. DOI
  17. A. Le Boudec, N. Matte Bon - A commutator lemma for confined subgroups and applications to groups acting on rooted trees, Trans. Amer. Math. Soc. 376 (2023), 7187-7233. DOI
  18. K. Mann, M. Triestino - On the action of the \(\Sigma(2,3,7)\) homology sphere group on its space of left-orders, Fund. Math. 261 (2023), 297-302. DOI
  19. H. Hmili, I. Liousse - Inner amenability of the subgroups of \(\mathrm{PL}^+(I)\), Bull. Belg. Math. Soc. - Simon Stevin 29 (2022), 555-561. DOI
  20. N. Guelman, I. Liousse - Uniform perfectness for Interval Exchange Transformations with or without Flips, Ann. Instit. Fourier (Grenoble) 72 (2022), 1477-1501. DOI
  21. A. Le Boudec, N. Matte Bon - Confined subgroups and high transitivity, Annales Henri Lebesgue 5 (2022), 491-522. DOI
  22. H. Eynard-Bontemps, A. Navas - Mather invariant, distortion, and conjugates for diffeomorphisms of the interval, J. Funct. Anal. 281 (2021), 109149. DOI
  23. H. Hmili, I. Liousse - Nombre de classes de conjugaison d’éléments d’ordre fini dans les groupes de Brown-Thompson, Bull. Soc. Math. Fr. 148 (2020), 399-409. DOI
  24. M. Triestino - On James Hyde's example of non-orderable subgroup of \(\mathrm{Homeo}(D,\partial D)\), Enseign. Math (2) 66 (2020) 409-418. DOI
  25. C. Bonatti, S.-h. Kim, T. Koberda, M. Triestino - Small \(C^1\) actions of semidirect products on compact manifolds, Algebr. Geom. Topol. 20 (2020), 3183-3203. DOI
  26. N. Guelman, I. Liousse - Distortion in groups of affine interval exchange transformations, Groups Geom. Dyn. 13 (2019), 795-819. DOI
  27. N. Matte Bon, M. Triestino - Groups of piecewise linear homeomorphisms of flows, Compositio Math. 156 (2020), 1595-1622. DOI
  28. C. Rivas, M. Triestino - One-dimensional actions of Higman's group, Discrete Analysis 2019:20, 15pp. DOI
Random dynamics:
  1. D. Malicet, G. Salcedo - Random Dynamical Systems on the circle without a finite orbit, arXiv:2501.12158
  2. P. G. Barrientos, D. Malicet - Mostly contracting random maps, arXiv:2412.03729
  3. A. Gorodetski, V. Kleptsyn, G. Monakov - Central Limit Theorem for non-stationary random products of \(\mathrm{SL}(2, \mathbb{R})\) matrices, arXiv:2411.12003
  4. A. Gorodetski, V. Kleptsyn - Log Hölder continuity of the rotation number, arXiv:2410.15462
  5. A. Gorodetski, V. Kleptsyn - Non-stationary Anderson Localization, arXiv:2403.15970
  6. D. Malicet, E. Militon - Random actions of homeomorphisms of Cantor sets embedded in a line and Tits alternative, arXiv:2304.08070
  7. A. Gorodetski, V. Kleptsyn - Non-stationary version of Furstenberg Theorem on random matrix products, arXiv:2210.03805
  8. A. Gorodetski, V. Kleptsyn, G. Monakov - Hölder regularity of stationary measures, arXiv:2209.12342
  9. A. Gordenko - Random dynamical systems on a real line, arXiv:2009.14686
  10. A. Gorodetski, V. Kleptsyn - Non-stationary version of Ergodic Theorem for random dynamical systems, Moscow Math. J. 23 (2023), 515-532. DOI
  11. V. Kleptsyn, M. Pollicott, P. Vytnova - Uniform lower bounds on the dimension of Bernoulli convolutions, Adv. Math. 395 (2022), 108090. DOI
  12. D. Malicet - Lyapunov exponent of random dynamical systems on the circle, Ergodic Theory Dyn. Systems 42 (2021), 2080-2107. DOI
  13. A. Gorodetski, V. Kleptsyn - Parametric Furstenberg Theorem on random products of \(\mathrm{SL}(2,\mathbb{R})\) matrices, Advances Math. 378 (2021), 107522. DOI
Group actions on surfaces:
  1. E. Militon - Generalized foliations for homeomorphisms isotopic to a pseudo-Anosov homeomorphism: a geometric realization of a result by Fathi, arXiv:2407.02011
  2. F. Le Roux, A. Passeggi, M. Sambarino, M. Wolff - A note on weak conjugacy for homeomorphisms of surfaces, arXiv:2407.01042
  3. P.-A. Guihéneuf, E. Militon - Hyperbolic isometries of the fine curve graph of higher genus surfaces, arXiv:2311.01087
  4. P.-A. Guihéneuf, E. Militon - Homotopic rotation sets for higher genus surfaces, Mem. Amer. Math. Soc. (to appear), arXiv:2201.08593
  5. F. Le Roux, M. Wolff - Automorphisms of some variants of fine graphs, Algebr. Geom. Topol. 24 (2024), 4697-4730. DOI
  6. P.-A. Guihéneuf, E. Militon - Parabolic isometries of the fine curve graph of the torus, Proc. Lond. Math. Soc. (3) 129 (2024), article ID e12625. DOI
  7. J. Bowden, S. Hensel, K. Mann, E. Militon, R. Webb - Rotation sets and actions on curves, Adv. Math. 408B (2022), 108579. DOI
  8. N. Guelman, I. Liousse - Any Baumslag-Solitar action on surfaces with a pseudo-Anosov element has a finite orbit, Ergodic Theory Dyn. Systems 39 (2019), 3353-3364. DOI
Flows on 3-manifolds:
  1. T. Barbot, S. Fenley, R. Potrie - On transverse \(\mathbf{R}\)-covered minimal foliations, arXiv:2501.14489
  2. T. Barthelmé, C. Bonatti, K. Mann - Non-transitive pseudo-Anosov flows, arXiv:2411.03586
  3. T. Barthelmé, C. Bonatti, K. Mann - Completing Prelaminations, arXiv:2406.18917
  4. T. Barbot, S. Fenley - Orbital equivalence classes of finite coverings of geodesic flows, arXiv:2205.02495
  5. P. Dehornoy, M. Shannon - Almost equivalence of algebraic Anosov flows, arXiv:1910.08457
  6. P. Dehornoy - The cat-bat map, the figure-eight knot, and the five orbifolds, MATRIX Annals (to appear), arXiv:2409.06543
  7. C. Bonatti - Action on the circle at infinity of foliations of \(\mathbb{R}^2\), Enseign. Math., DOI
  8. M. Asaoka, C. Bonatti, T. Marty - Oriented Birkhoff sections of Anosov flows, J. Topol. 17 (2024), paper no. e12356. DOI
  9. P. Dehornoy - La courbe en huit sur les sphères à pointes et le nœud de huit, Sémin. Théor. Spectr. Géom. 36 (2019-2021), 1-30. DOI
  10. V. Colin, P. Dehornoy, U. Hryniewicz, A. Rechtman - Generic properties of 3-dimensional Reeb flows: Birkhoff sections and entropy, Comment. Math. Helv. 99 (2024), 557-611. DOI
  11. P. Dehornoy, B. Ozbagci, - Complex vs convex Morse functions and geodesic open books, Int. J. Math. 35 (2024), article ID 2350110. DOI
  12. C. Bonatti, I. Iakovoglou - Anosov flows on 3-manifolds: the surgeries and the foliations, Ergodic Theory Dyn. Systems 43 (2023), 1129-1188. DOI
  13. V. Colin, P. Dehornoy, A. Rechtman - On the existence of supporting broken book decompositions for contact forms in dimension 3, Invent. Math. 231 (2022), 1489-1539. DOI
  14. P. Dehornoy, A. Rechtman - Vector fields and genus in dimension 3, IMRN 2022 (2022), 3262-3277. DOI
Other topics:
  1. C. Bonatti, L. J. Diaz, K. Gelfert - Heterodimensional cycles of hyperbolic ergodic measures, arXiv:2405.12686
  2. A. Le Boudec, N. Matte Bon, V. Salo - On the growth of actions of free products, arXiv:2401.06886
  3. N. Matte Bon, V. Nekrashevych, T. Zheng - Liouville property for groups and conformal dimension, arXiv:2305.14545
  4. A. Le Boudec, N. Matte Bon - Growth of actions of solvable groups, arXiv:2205.11924
  5. A. Gordenko - Limit shapes of large skew Young tableaux and a modification of the TASEP process, arXiv:2009.10480
  6. C. Hirsch, M. Holmes, V. Kleptsyn - WARM percolation on a regular tree in the strong reinforcement regime, arXiv:2009.07682
  7. D. Long, A. Reid, M. Wolff - Most Hitchin representations are strongly dense, Michigan Math. J., DOI
  8. J. Marché, M. Wolff - Transitivity of normal subgroups of the mapping class group on character varieties, Groups Geom. Dyn. 19 (2025), 187-193., DOI
  9. F. Alcalde Cuesta, F. Dal'bo - Horocycle flow on flat projective bundles: topological remarks and applications, J. Dyn. Control Syst. 30 (2024), paper no. 40. DOI
  10. C. Bonatti, K. Shinohara - Aperiodic chain recurrence classes of \(C^1\)-generic diffeomorphisms, Invent. Math. 238 (2024), 637-689. DOI
  11. E. Gorokhovsky, N. Matte Bon, O. Tamuz - A quantitative Neumann lemma for finitely generated groups, Isr. J. Math. 262 (2024), 487-500. DOI
  12. A. Le Boudec, N. Matte Bon - Some torsion-free solvable groups with few subquotients, Math. Proc. Camb. Philos. Soc. 176 (2024), 279-286. DOI
  13. D. Barros, C. Bonatti, M. J. Pacifico - Up, down, two-sided Lorenz attractor, collisions, merging and switching, Ergodic Theory Dyn. Systems 44 (2024), 2737-2781. DOI
  14. C. Bonatti, K. Shinohara - A mechanism for ejecting a horseshoe from a partially hyperbolic chain recurrence class, Ergodic Theory Dyn. Systems 44 (2024), 2080-2142. DOI
  15. V. Gorin, V. Kleptsyn - Universal objects of the infinite beta random matrix theory, J. Eur. Math. Soc. 26 (2024), 3429-3496. DOI
  16. B. Deroin, C. Dupont, V. Kleptsyn - Convexity of complements of limit sets for holomorphic foliations on surfaces, Math. Ann. 388 (2024), 2727-2753. DOI
  17. S. Baader, P. Dehornoy, L. Liechti - Minor theory for quasipositive surfaces, in A. Papadopoulos (ed.) Essays in geometry. Dedicated to Norbert A'Campo. Berlin: European Mathematical Society. IRMA Lect. Theor. Phys. 34 (2023), 351-358. DOI
  18. C. Hirsch, M. Holmes, V. Kleptsyn - Infinite WARM graphs III: strong reinforcement regime, Nonlinearity 36 (2023), 3013-3042. DOI
  19. P.-E. Caprace, A. Le Boudec, N. Matte Bon - Piecewise strongly proximal actions, free boundaries and the Neretin groups, Bull. Soc. Math. France 150 (2022), 773-795. DOI
  20. F. Le Roux, S. Seyfaddini - The Anosov-Katok method and pseudo-rotations in symplectic dynamics, J. Fixed Point Theory Appl. 24 (2022), article number 36. DOI
  21. L. Alanís-López, E. Artal Bartolo, C. Bonatti, X. Gómez-Mont, M. González Villa, P. Portilla Cuadrado - On a quadratic form associated with the nilpotent part of the monodromy of a curve, Indag. Math. 33 (2022), 816-843. DOI
  22. V. Kleptsyn, F. Quintino - Phase transition of capacity for the uniform \(G_\delta\)-sets, Potential Anal. 56 (2022), 597-622. DOI
  23. C. Bonatti, T. Pinsky - Lorenz attractors and the modular surface, Nonlinearity 34 (2021), 4315. DOI
  24. R. Detcherry, M. Wolff - A basis for the Kauffman skein module of the product of a surface and a circle, Algebr. Geom. Topol. 21 (2021), 2959-2993. DOI
  25. C. Hirsch, M. Holmes, V. Kleptsyn - Absence of WARM percolation in the very strong reinforcement regime, Ann. Appl. Probab. 31 (2021), 199-217. DOI