LICENCE ÉCONOMIE-GESTION

MATHÉMATIQUES

L1/S1, Année 2024/2025

Correction CC n°2 - 30 minutes

Exercice 1: Etude de fonction

Soit $f: x \to (x^2 - 5x + 6)^2$.

1. Déterminer l'ensemble de définition de f et calculer la dérivée f (vous pouvez laisser le résultat sous forme factorisée).

$$f$$
 est un polynôme, donc $\mathcal{D}_f = \mathbb{R}$.
 $f'(x) = 2(2x - 5)(x^2 - 5x + 6)$

2. Etudier le signe de f'(x) en fonction de x et dresser le tableau de variation de f. (Inutile d'indiquer les valeurs de f en ses points critiques)

$$2x - 5 \ge 0 \Leftrightarrow x \ge \frac{5}{2}$$

Le discriminant de $X^2 - 5X + 6$ est $\Delta = 25 - 24 = 1$ donc ses racines sont $\frac{5+1}{2} = 3$ et $\frac{5-1}{2} = 2$. Ainsi :

x	$-\infty$		2		$\frac{5}{2}$		3		$+\infty$
2x-5		_		_	0	+		+	
$\begin{array}{ c c } \hline x^2 - \\ 5x + 6 \\ \hline \end{array}$		+	0	_		_	0	+	
f'(x)		_	0	+	0	_	0	+	
f	+∞		→		<i>→</i> \		→		→ +∞

3. Déterminer les points critiques de f ainsi que leur nature. Les points critiques de f sont 2, qui est un minimum local, $\frac{5}{2}$ qui est un maximum local, et 3 qui est un minimum local.

4. Tracer grossièrement la courbe de f.

Exercice 2 : Géométrie

Soient deux vecteurs $\vec{a} = (-2, 6)$ et $\vec{b} = (3, 1)$

- 1. Calculer les normes $||\vec{a}||$, $||\vec{b}||$ et $||\vec{a} + \vec{b}||$. $||\vec{a}|| = \sqrt{40} = 2\sqrt{10}$ $||\vec{b}|| = \sqrt{10}$ $||\vec{a} + \vec{b}|| = ||(-2+3, 6+1)|| = ||(1,7)|| = \sqrt{50} = 5\sqrt{2}$
- 2. Calculer le produit scalaire $\langle \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b} \rangle$. $\langle \vec{a}, \vec{b} \rangle = -2 \times 3 + 6 \times 1 = -6 + 6 = 0$
- 3. \overrightarrow{a} et \overrightarrow{b} sont-ils orthogonaux? Colinéaires? Il sont orthogonaux car leur produit scalaire est nul et non colinéaires car non nuls et orthogonaux.

Exercice 3: Fonction à deux variables

Soit $g:(x,y) \to ln(2y-x^2)$

1. Déterminer le domaine de définition \mathcal{D}_g de g.

$$\mathcal{D}_g = \{(x, y) \in \mathbb{R}^2, \ y > \frac{x^2}{2}\}$$

2. Pour
$$(x, y) \in \mathcal{D}_g$$
, calculer le gradient de g en (x, y) .
$$\frac{\partial g}{\partial x}(x, y) = -\frac{2x}{2y - x^2}$$

$$\frac{\partial g}{\partial y}(x, y) = \frac{2}{2y - x^2}$$

3. Déterminer les points critiques de g dans son domaine de définition. Soit $(x,y) \in \mathcal{D}_q$.

$$\begin{cases} \frac{\partial g}{\partial x}(x,y) = 0 \\ \frac{\partial g}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} -\frac{2x}{2y - x^2} = 0 \\ \frac{2}{2y - x^2} = 0 \end{cases} \iff \begin{cases} 2x = 0 \\ 2 = 0 \\ 2y - x^2 \neq 0 \end{cases}$$

Le dernier système comprenant une équation impossible : $Crit_g = \emptyset$