
GROUPS OF AFFINE AND PIECEWISE AFFINE HOMEOMORPHISMS

MICHELE TRIESTINO

Abstract. The translation T : x 7→ x+1 and the multiplication D : x 7→ 2x generate a group
of affine homeomorphisms of the real line, usually named BS(1, 2) after Baumslag-Solitar, or
dyadic affine group. This group is generated by the elements T, D, with the only relation
DT D−1 = T 2. This relation is definitely good from a dynamical point of view, in the sense
that for any action, the dynamics of T is conjugate to the action of the square T 2. Starting
from is, the continuous actions of BS(1, 2) on the real line are now well understood (Guelman-
Liousse [11]). It turns out that they are even more rigid (Bonatti-Monteverde-Navas-Rivas
[8]). Introducing a third element H, coinciding with D in restriction to the positive half-line,
at with the identity in restriction to the negative half-line, on finds an interesting group
acting (faithfully) C0 but not C1 on the line (Bonatti-Lodha-T. [7]). This group embeds
in the recent examples of Monod [15], Lodha and Tatch-Moore [13] of nonamenable groups
without free subgroups.

This are lecture notes for a 3h mini-course given during the workshop “Affine and one-
dimensional dynamics”, held in Aussois, December 2017. Many thanks go the organizers
Charles Fougeron and Selim Ghazouani.

1. Affine groups and Baumslag-Solitar groups

The group of (orientation preserving) affine transformations of the real line Aff+(R) is
isomorphic to the semi-direct product RoR+: conjugating a translation by a homothety gives
a new translation. Therefore every subgroup of Aff+(R) is abelian or metabelian.

In this notes we shall be interested in studying actions of some finitely generated subgroups
of Aff+(R), for a twofold reason: (1) the structure of these groups is quite simple; (2) we know
that they admit an action (the standard affine action) which can serve as reference action.
Example 1.1. A family of translations generate an abelian group. Similarly, a family of
homotheties generate an abelian group.
Example 1.2. The translation T : x 7→ x + 1 and the homothety D : x 7→ 2x generated the
group Aff+(Z[1

2 ]) of affine transformations of the ring Z[1
2 ]. This group has the presentation

〈D,T | DTD−1 = D2〉, so it is isomorphic to the so-called Baumslag-Solitar group BS(1, 2).
Replacing x 7→ 2x by x 7→ nx, n ∈ N, one obtains the group Aff+(Z[ 1

n ]) ∼= BS(1, n) = 〈a, b |
aba−1 = bn〉.

We can also consider the group generated by T together with the homothety x 7→ λx, λ > 1.
The group is isomorphic to the semi-direct product Z[λ, λ−1]oZ, where the right factor acts by
multiplication by λ. When λ is irrational, the group is isomorphic to the wreath product Z oZ,
whilst for λ = n/m rational the group is a homomorphic image of the Baumslag-Solitar group
BS(m,n) = 〈a, b | abmb−1 = bn〉. These one-relator groups where introduced by Bausmlag
and Solitar in 1962 [5] to give the first examples of non-hopfian groups (a group G is hopfian
if G/N ∼= G implies N = {id}). Indeed, BS(2, 3) is non-hopfian, and hence highly different
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from Z[3
2 ,

2
3 ] o Z = Z[1

6 ] o Z. Therefore, it is with some abuse of language that one refers to
Aff+(Z[ 1

n ]) as to a Baumslag-Solitar group... For this reason the groups BS(1, n) are sometimes
called the solvable, or affine, Baumslag-Solitar groups.

Example 1.3. Other interesting groups of affine transformations are the abelian-by-cyclic groups
ΓA = HoAZ, where H is a free abelian group of translations (of finite rank), and Z is generated
by a homothety that acts on H as a matrix A ∈ GL(d,Q). When A has no eigenvalue of norm
1, the group ΓA shares many similarities with the groups BS(1, n).

For instance, taking d Q-independent translations Ti : x 7→ x + ti, i = 1, . . . , d, and a
homothety D : x 7→ nx, defines the group 〈D,T1, . . . Td〉 ∼= ZdonId

Z, where nId is the diagonal
matrix diag(n, . . . , n).

The reason actions of (solvable) Baumslag-Solitar groups are widely studied is because of
the simple presentation, given by just one relation. Moreover, as we shall see in action, the
relation abma−1 = bn has a dynamical meaning: a conjugates a power of b to another power.

One of the first relevant works in this subject is by Burslem-Wilkinson [9], where they
study sufficiently regular actions of BS(1, n) on the circle. This was later improved by
Guelman-Liousse [11], and finally by Bonatti-Monteverde-Navas-Rivas [8]. For actions on
higher-dimensional manifolds, McCarthy [14] proved that C1 perturbations of the trivial action
of ΓA are not faithful. Another example of rigidity result was obtained by Asaoka [3, 4] for
standard actions of ΓA on spheres and tori, and also by Wilkinson-Xue [20] for actions on tori.
Finally, planar actions of BS(1, n) have been investigated by several authors [1, 2, 12].

Our aim is to us illustrate some of the low-tech methods with a couple of examples.

Example 1.4. The group BS(1, 1) is simply the abelian group Z2. We can describe all possible
actions of 〈a, b | [a, b]〉 ∼= Z2 on the real line.

Suppose first the generator a has no fixed point on R. Then b defines a homeomorphism b
of the circle S1

a := R/〈a〉. Reciprocally, any homeomorphism of S1
a lifts to a homeomorphism

of R commuting with a. Therefore the classification of actions of Z2 on R, with a primitive
element acting without fixed points is given by conjugacy classes of actions of Z on the circle.
We remark that b has a well-defined relative translation number, rot∼a (b) = limn→∞

bn(x)−x
an(x)−x ,

which is given by the translation number of the lift b.
Suppose now that a has fixed points, and let I be a connected component of R \ Fix(a).

As a and b commute, the images bk(I), k ∈ Z, are also connected components of R \ Fix(a).
Observe that we have the property that for any connected component I ⊂ R \ Fix(a) the
images bk(I), k ∈ Z, either coincide, or they are pairwise disjoint.

In the first case, b|I defines a homeomorphism of the circle I/〈a|I〉, as in the previous
situation. In the second case, the two accumulation points of bk(x), x ∈ I define an open
interval J , which contains I. The map b has no fixed point in J , so a|J defines a homeomorphism
of the circle J/〈b|J〉.

Given a connected component I ⊂ R \ Fix(a) and b commuting with a, it is convenient to
extend the notion of relative translation number by setting

rot∼a (b, I) := lim
n→∞

bn(x)− x
an(x)− x, x ∈ I.

This relative translation number is allowed to take the values ±∞, and this happens if and
only if b takes I disjointly from itself. If J is a connected component of R \ Fix(b) such that



GROUPS OF AFFINE AND PIECEWISE AFFINE HOMEOMORPHISMS 3

I ∩ J 6= ∅, then one finds the relation

rot∼a (b, I) = 1
rot∼b (a, J) .

(Here the reader should recognize the continued fraction algorithm.)

Example 1.5. An other interesting example is provided by the so-called Klein group BS(1,−1) =
〈a, b | aba−1 = b−1〉, which is isomorphic to the fundamental group π1(K) of the Klein bottle
K. Also in this case we are able to describe all the possible actions of the group on R, and we
will see that the range of possibilities will be much more restricted. For simplicity, we assume
that the action of π1(K) on R has no global fixed points.

We first prove that a cannot act with fixed points. Indeed, suppose there was a fixed point
p ∈ R, which is not fixed by b. Without loss of generality, we can assume b−1(p) < p < b(p).
Applying a, we get p < ab(p). However ab(p) = b−1a(p) = b−1(p) < p, contradiction.

Then we prove that b must have a fixed point. If this was not the case, we could assume
x < b(x) for every x ∈ R. Then given a point x ∈ R, we would have

a(x) < ab(x) = b−1(a(x)) < a(x),
which is absurd. Moreover, if p is a fixed point for b, then all the images ak(p), k ∈ Z, are
fixed points, as one deduces from the relation ab = b−1a.

So, given a fixed point p for b, the interval I = [p, a(p)] is preserved by b, and it corresponds
to a fundamental domain for a. The relation aba−1 = b−1 implies that b is completely
determined by its behavior on I: for any x ∈ I,

b(ak(x)) =
{
akb−1(x) if k odd,
akb(x) if k even.

The result of all of this discussion is that there as many actions of π1(K) on R without global
fixed points, as actions of Z on the interval.

2. BS(1, 2)

In the following we consider actions of BS(1, 2) = 〈a, b | aba−1 = b2〉 on the real line. We
will prove the following.

Theorem 2.1 (Bonatti-Monteverde-Navas-Rivas [8]). Any faithful C1 action on the closed
interval [0, 1] of the group BS(1, 2) with no global fixed points in (0, 1) is topologically conjugate
to the standard affine action of BS(1, 2) on R. Moreover, the element a corresponding to
multiplication by 2, has derivative exactly equal to 2 at its unique interior fixed point.

Remark 2.2. This result can be extended to actions of abelian-by-cyclic groups ΓA’s.

This will take a relatively long work. The first result we need appears in [17] and simply
deals with continuous actions.

Proposition 2.3 (Rivas). Suppose BS(1, 2) acts on R with no global fixed points. If b has no
fixed point, then the action is semi-conjugate to the standard affine action. If b has a fixed
point, then a has no fixed point.

If b has a fixed point p ∈ R, then the relation aba−1 = b2 implies that all the images ak(p)
are fixed by b. As there is no global fixed point, we must have that {ak(p)} accumulates at
±∞. Therefore a has no fixed point in R. As for the case of BS(1,−1), we see that the map b
is determined by its behavior on a fundamental domain I = [p, a(p)] (we can assume a(p) > p),
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and by a choice of square roots for all preimages a−k(I). If b has no fixed point, then we need
a different strategy. We observe that BS(1, 2) contains a “densely defined” topological flow
bZ[ 1

2 ] = {br; r ∈ Z[1
2 ]}.

Lemma 2.4. The group bZ[ 1
2 ] is semi-conjugate to the “densely defined” flow of translations

Tr : x 7→ x+r, r ∈ Z[1
2 ]. In particular, there exists an atomless Radon measure ν on R, unique

up to scalar multiplication, which is invariant under the action of bZ[ 1
2 ].

Proof. The action of the abelian group bZ[ 1
2 ] defines an action on the circle S1

b = R/〈b〉 (with
kernel bZ). Observe that the action of bZ[ 1

2 ] on R is free, that is every element has no fixed
point. Thus the same holds for the action on S1

b . As the group is abelian, the action admits
an invariant probability measure µ on S1

b , which has no atoms (for the action is free). The
measure µ lifts to a Radon measure ν on R, which is now invariant under the action of bZ[ 1

2 ].
We observe that ν gives the relative translation number

rot∼b (g) = ν[0, g(0)], g ∈ bZ[ 1
2 ]

with the convention that ν[t, s] = −ν[s, t] when t > s. Moreover, rot∼b defines an injective
homomorphism from bZ[ 1

2 ] to R. Define the map F (x) = ν[0, x]. We claim that F defines a
semi-conjugacy from the action of bZ[ 1

2 ] to rot∼b (as an action by translations on R). Indeed,
we have

F (g(x)) = ν[0, g(x)] = ν[g(0), g(x)] + ν[0, g(0)]
= ν[0, x] + ν[0, g(0)] = F (x) + rot∼b (g).

This ends the proof. �

We push the previous proof to obtain a semi-conjugacy to an affine action. The idea is
that the relation aba−1 = b2 implies that a acts as multiplication by 2 on relative translation
numbers. Let us formalize this intuition. The relation aba−1 = b2 implies that also the image
a∗ν is invariant, so it must be equal to λaν, for some scalar ν > 0. More generally, given
g ∈ BS(1, 2), there exists λg > 0 such that g∗ν = λgν. Moreover, the assignment g 7→ λg
defines a homomorphism from BS(1, 2) to the multiplicative group R∗+.

Consider now the map ψ : BS(1, 2)→ Aff+(R), defined by

ψg(x) = 1
λg
x+ ν[0, g(0)].
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Let us verify that ψ is actually a homomorphism. Given h, g ∈ BS(1, 2), a careful computation
gives

ψgh(x) = 1
λgh

x+ ν[0, gh(0)]

= 1
λg

( 1
λh
x+ ν[g−1(0), h(0)]

)
= 1
λg

( 1
λh
x+ ν[g−1(0), 0] + ν[0, h(0)]

)
= 1
λg

( 1
λh
x+ λgν[0, g(0)] + ν[0, h(0)]

)
= ψgψh(x).

Finally, as before, we prove that F (x) = ν[0, x] defines a semi-conjugacy from the initial action
of BS(1, 2) to the one defined by ψ:

F (g(x)) = ν[0, g(x)] = ν[g(0), g(x)] + ν[0, g(0)]

= 1
λg
ν[0, x] + ν[0, g(0)] = ψg(F (x)).

This is what we wanted to prove.

3. C1 actions

From now on we will be interested in C1 actions and for this reason we pass from R to [0, 1],
as differentiability at endpoints is crucial.

Remark 3.1. The chain rule guarantees that if G acts C1 on the interval [0, 1], then every
commutator has derivative equal to 1 at both the endpoints 0, 1.

However, up to topological conjugacy, one can assume that this is the case for every element
in the group: one can indeed conjugate the action using a homeomorphism which is locally
of the form sgn(x) exp(−1/|x|) on a neighborhood of the endpoints. This trick goes back to
Muller [16] and Tsuboi [19].

Proposition 3.2 (Cantwell-Conlon [10]; Guelman-Liousse [11]). Suppose BS(1, 2) acts on
[0, 1] with no global fixed points in (0, 1) and such that b has a fixed point in (0, 1). Then
the action cannot be C1. In particular any C1 action of BS(1, 2) on the interval [0, 1] is
semi-conjugate to the standard affine action.

Proof. We have seen that if p is a fixed point of b, then the interval I = (p, a(p)) is a
fundamental domain for the action of a and is fixed by b. As the intervals ak(I), k ∈ Z, are all
preserved by b, then b must have derivative equal to 1 at the endpoints 0, 1. Actually, using
Remark 3.1, we can assume something stronger. Choose ε > 0 so that (1− ε)3 > 1

2 . Then we
can assume that there exists k0 such that for every |k| ≥ k0, the derivatives of a±1, b±1 are
ε-close to 1 on every interval ak(I). We write I ′ = a−k0(I).

Choose a point x ∈ I ′ which is not fixed by b. Consider the interval J = (x, b(x)), which
has the property that the images bn(J), n ∈ Z, are pairwise disjoint and contained in I ′.
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Fix m ∈ N. Given ε = (ε1, . . . , εm) ∈ {0, 1}m, we consider the element
B(ε) = am(b−εma−1)(b−εm−1a−1) · · · (b−ε1a−1)

=
m∏
i=1

aib−εia−i

which is equal to b−R(ε), with R(ε) =
∑m
i=1 εi2i.

(1) With respect to the generating system {a, b}, B(ε) belongs to the ball of radius 3m.
(2) For any x ∈ J , the point B(ε)(x) = b−R(ε)(x) lies on the left of x. Moreover this holds

for any of the (at most) first 2m intermediate images of x, while the last m iterations
of a bring x back into I ′. Thus, by our condition on the derivatives, we get the bound

(1− ε)3m ≤ B(ε)′(x).
We deduce that

(1− ε)3m|J | ≤ |B(ε)(J)|.
(3) For different sequences ε ∈ {0, 1}m, the elements B(ε) are all different and the intervals

B(ε)(J) are pairwise disjoint. (We are simply writing the integer R in the dyadic
basis.) Thus the previous estimate gives

2m(1− ε)3m|J | ≤
∑

ε∈{0,1}m

|B(ε)(J)| ≤ 1 = |[0, 1]|.

After our choice of ε > 0, this gives a contradiction for large values of m. �

A similar argument yields the following:
Proposition 3.3 (Bonatti-Monteverde-Navas-Rivas [8]). Any C1 action of BS(1, 2) on the
interval [0, 1] without global fixed points is topologically conjugate to the standard affine action.

Proof. From the previous proof, we already know that any such action is semi-conjugate to
the standard one. To complete the proof, we need to show that the action is minimal. That is,
we want to prove that there is no wandering interval for the “topological flow” bZ[ 1

2 ]. One can
simply repeat the previous proof. �

Proposition 3.4 (Bonatti-Monteverde-Navas-Rivas [8]). Any C1 action of BS(1, 2) on the
interval [0, 1] without global fixed points has the property that at the unique fixed point p ∈ (0, 1)
of a, a′(p) = 2.

Proof. We proceed as before, but working also on a neighborhood of p. As before, we suppose
that on a given neighborhood of the endpoints of the interval, the derivatives of the generators
a±1, b±1 are ε-close to 1 (we shall choose ε at the very end of the argument). Let I0 be the
interval [p, b(p)]. Fix m ∈ N, and set Im = a−m(I0) = [p, a−mb(p)] = [p, b1/2m(p)].

Suppose first a′(p) < 2. Fix δ > 0 and a neighborhood of p such that (a−1)′(x) > 1
2 + δ for

any x in the neighborhood. Then there exists C > 0 such that

|Im| = |a−m(I0)| > C

(1
2 + δ

)m
|I0|.

Given a sequence ε ∈ {0, 1}m, we consider now the element
b(ε) = a−m(bεma) · · · (bε1a)

=
m∏
i=1

a−ibεiai,
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which is equal to br(ε), with r(ε) =
∑m
i=1 εi2−i (which is a dyadic rational in [0, 2m−1

2m ] of the
form l/2m). We observe the following.

(1) With respect to the generating system {a, b}, b(ε) belongs to the ball of radius 3m.
(2) For any x ∈ Im, the point b(ε)(x) = br(ε)(x) lies on the right of x. Moreover this holds

for any of the (at most) first 2m intermediate images of x, while the last m iterations
of a bring x back, but not past Im.

(3) For different sequences ε ∈ {0, 1}m, the elements b(ε) are all different and the intervals
b(ε)(I◦m) are pairwise disjoint, covering I0.

Consider some largeN ∈ N so that the interval Jm = bN (Im) is contained in the neighborhood of
1 on which we have the good control of the derivatives of the generators. TakeD = min[0,1](bN )′,
so that

(1) |Jm| ≥ CD
(1

2 + δ

)m
|I0|.

The previous considerations on the elements b(ε) hold also when considering their restrictions
to Jm, for they all commute with bN . However now we can use the control on derivatives: for
any x ∈ Jm, we have

(1− ε)3m ≤ (b(ε))′(x),
therefore

(1− ε)3m|Jm| ≤ |b(ε)(Jm)|.
Summing over all possible sequences ε ∈ {0, 1}m, gives

2m(1− ε)3m|Jm| ≤
∑

ε∈{0,1}m

|b(ε)(Jm)| ≤ 1.

Finally, (1) gives
2m(1− ε)3mCD

(1
2 + δ

)m
|I0| ≤ 1.

If we choose ε > 0 so that 2(1− ε)3
(

1
2 + δ

)
> 1, we get the desired contradiction.

Assuming a′(p) > 2, we can repeat similar arguments, working with inequalities on the
reversed sides. The details are left to the reader. �

4. The broken dyadic affine group

The “broken” dyadic affine group G2 has been introduced in [7] in order to find an obstruction
for the existence of C1 actions. In fact, there are only a few known obstructions, the most
celebrated being given by Thurston’s stability theorem [18], which states that any group of
C1 diffeomorphisms of the closed interval is locally indicable, that is, every finitely generated
subgroup surjects to Z.

Our group G2 is built upon the dyadic affine group BS(1, 2) = 〈D,T | DTD−1 = D2〉, with
the addition of “half” of the scalar multiplication D: for this we define H : R→ R by setting

H(x) =
{
x if x < 0,
2x if x ≥ 0.

It is also useful to define K = DH−1 = H−1D, which corresponds to the “negative half”.
Observe that H,K generate an abelian group of rank 2, which contains D. The group G2 is
the subgroup of Homeo+(R) generated by D,T,H. By construction, G2 is a subgroup of the
group PL+(R), of piecewise affine homeomorphisms. Although the explicit definition of G2,
we do not know a presentation of this group.
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Let us see an easy consequence of Theorem 2.1.

Proposition 4.1. The standard action of G2 on R cannot be topologically conjugate to a C1

action on the closed interval [0, 1].

Proof. Suppose such a conjugacy existed, and write d, t, h, . . . for the corresponding conjugated
diffeomorphisms of [0, 1] coming from D,T,H, . . . Denote by p the unique interior fixed point
of d. Theorem 2.1 tells that d′(p) = 2. As d and h coincide on the right of p, this gives
h′(p) = d′(p) = 2. On the other side, h is the identity on the left of p, so we must have
h′(p) = 1. Contradiction. �

The main result of [7] is the following:

Theorem 4.2 (Bonatti-Lodha-T). The group G2 has no faithful C1 action on the closed
interval [0, 1]. More precisely, for any representation ρ : G2 → Diff+([0, 1]), the commutator
[T,HDH−1] belongs to the kernel of ρ.

The proof is way more involved, and we do not enter into the details here.
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